Athena Co makes two products, Phones and Laptops.

Phones take 2 labour hours each to make Laptops take 5 labour hours each to make

What is the overhead cost per unit for Phones and Laptops if overheads are absorbed on the basis of labour hours?

Step 1 Estimate the overhead likely to be incurred during the coming period. Athena Co estimates that the total overhead will be \$50,000.

Step 2 Estimate the activity level for the period.

Athena Co estimates that a total of 100,000 direct labour hours will be worked.

Step 3 Divide the estimated overhead by the budgeted activity level.

Absorption rate = \$50,000 / 100,000 hrs = = \$0.50 per direct labour hour

Step 4 Absorb the overhead into the cost unit by applying the calculated absorption rate.

	Phones	Laptops
Labour hours per unit	2	5
Absorption rate per labour hour	\$0.50	\$0.50
Overhead absorbed per unit	\$1.00	\$2.50

The budgeted production overheads and other budget data of **Bridge Co** are as follows.

Budget

Overhead cost \$36,000 Machine hours 10,000 Labour hours 18,000 Units of production 3,000

Absorption Rate per machine hour = \$36,000 / 10,000 = \$3.60

Absorption Rate per labour hour = \$36,000 / 18,000 = \$2.00

Absorption Rate per unit of production = \$36,000 / 3,000 = \$12.00

The following data relates to one year for **Classic Co**

Budgeted machine hours – 25,000 Actual machine hours – 20,000 Budgeted overheads - \$350,000 Actual overheads - \$360,000

Absorption Rate per machine hour = Budgeted overheads / Budgeted machine hours Absorption Rate per machine hour = \$350,000 / 25,000 = \$14

Overheads absorbed = Actual machine hours * Absorption rate Overheads absorbed = 20,000 * \$14 = \$280,000

Under/Over Absorption = Overheads absorbed — Actual overheads Under/Over Absorption = \$280,000 - \$360,000 = - \$80,000

If Negative then UNDER Absorbed Thus \$80,000 UNDER absorbed

The following data relates to one year for **Delta Co**

Budgeted labour hours – 50,000 Actual labour hours – 60,000 Budgeted overheads - \$1,000,000 Actual overheads - \$1,100,000

Absorption Rate per labour hour = Budgeted overheads / Budgeted labour hours Absorption Rate per labour hour = \$1,000,000 / 50,000 = \$20

Overheads absorbed = Actual labour hours * Absorption rate Overheads absorbed = 60,000 * \$20 = \$1,200,000

Under/Over Absorption = Overheads absorbed — Actual overheads Under/Over Absorption = \$1,200,000 - \$1,100,000 = \$100,000

If Positive then OVER Absorbed Thus \$100,000 OVER absorbed

Using a predetermined absorption rate:		
1. Avoids fluctuations in unit costs caused by abnormally high or low overhead expenditure or activity levels.		
2. Offers the administrative convenience of being able to record full production costs sooner.		

Target Costing

Target Selling Price = \$100 Target Profit Margin = 40% Estimated Cost = \$70

Target Profit = Target Selling Price * Target Profit Margin Target Profit = \$100 * 0.4 = \$40

Target Cost = Target Selling Price — Target Profit Target Cost = \$100 - \$40 = \$60

Cost Gap = Estimated Cost - Target Cost Cost Gap = \$70 - \$60 = \$10

Break Even Point (BEP)

Selling Price per unit = \$200 Fixed Costs = \$500,000

Material Cost per unit = \$40 Planned Production = 6,000

Labour Cost per unit = \$60 Target Profit = \$200,000

Variable Costs per unit = Material cost per unit + Labour cost per unit Variable Costs per unit = \$40 + \$60 = \$100

Contribution per unit = Selling Price per unit - Variable Costs per unit Contribution per unit = \$200 - \$100 = \$100

BEP = Fixed Costs / Contribution BEP = \$500,000 / \$100 = 5,000 units

Margin of Safety (MoS) = Planned Production – BEP Margin of Safety (MoS) = 6,000 - 5,000 = 1,000

Target Profit Production = (Fixed Costs + Target Profit) / Contribution Target Profit Production = (\$500,000 + \$200,000) / \$100 = 7,000

Product Life Cycle

- 1. Introduction the product is introduced to the market, revenue rises, but losses are still made.
- 2. Growth revenue rises faster and the product becomes profitable.
- 3. Maturity The rate of revenue growth slows but good profits are still made
- 4. Decline Revenue declines, partly due to intense competition, and profits fall.